If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-80x+360=0
a = 4; b = -80; c = +360;
Δ = b2-4ac
Δ = -802-4·4·360
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{10}}{2*4}=\frac{80-8\sqrt{10}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{10}}{2*4}=\frac{80+8\sqrt{10}}{8} $
| 3x=45-9x | | 2(x+3)+2=21 | | 2x-2+x=33 | | 2x+4=x=x+3=3x | | 2^6x=4^5x+2 | | y/13-3=4 | | r-6r^2=- | | 5(x−4)=−60 | | -24v^2+12v+1=0 | | -7+2n=-3 | | y^2=171 | | -3p+10p= | | 5.4=-t/15 | | 7p-10=2p+15 | | 1/2(10x+42)=12+5x | | x-12+27=16 | | 4x+5x-30=180 | | b^2=171 | | -8-2x/3=-6 | | 30x=900-30x | | 4x-x=6+8 | | 2p+10=-8p | | 9x+8=90 | | 8+3(2x+1)=0 | | 3m-1=-8 | | 2(5x-8)+2(3x)=P | | 1.72=4.7x+3.6 | | 8x=144-18x | | 28+j=25 | | x^2-10x+25=3x-3 | | 20=-4(3a-12) | | 8(3x-10)+15=79 |